Uncategorized

Astrophysicists Solve 40-Year-Old Black Hole Jet Mystery With NASA’s IXPE – SciTechDaily

By

NASA’s IXPE Helps Solve Black Hole Jet Mystery

This illustration shows NASA’s IXPE spacecraft, at right, observing blazar Markarian 501, at left. A blazar is a black hole surrounded by a disk of gas and dust with a bright jet of high-energy particles pointed toward Earth. The inset illustration shows high-energy particles in the jet (blue). Credit: NASA/Pablo Garcia

Blazars are some of the brightest objects in the cosmos. They are composed of a supermassive

“This is a 40-year-old mystery that we’ve solved,” said Yannis Liodakis, lead author of the study and astronomer at FINCA, the Finnish Centre for Astronomy with

IXPE in Earth Orbit

Artist’s representation of IXPE in Earth orbit. Credit: NASA

Launched on December 9, 2021, the Earth-orbiting IXPE satellite, a collaboration between

“This is a 40-year-old mystery that we’ve solved. We finally had all of the pieces of the puzzle, and the picture they made was clear.” — Yannis Liodakis

“The first X-ray polarization measurements of this class of sources allowed, for the first time, a direct comparison with the models developed from observing other frequencies of light, from radio to very high-energy gamma rays,” said Immacolata Donnarumma, the project scientist for IXPE at the Italian Space Agency. “IXPE will continue to provide new evidence as the current data is analyzed and additional data is acquired in the future.”

The new study used IXPE to point at Markarian 501, a blazar located aproximately 450 million light years away from Earth in the constellation Hercules. This active black hole system sits at the center of a large elliptical galaxy.

IXPE watched Markarian 501 for three days in early March of 2022, and then again two weeks later. During these observations, astronomers used other telescopes in space and on the ground to gather information about the blazar in a wide range of wavelengths of light including radio, optical, and X-ray. While other studies have looked at the polarization of lower-energy light from blazars in the past, this was the first time scientists could get this perspective on a blazar’s X-rays, which are emitted closer to the source of particle acceleration.

NASA’s IXPE Helps Solve Black Hole Jet Mystery

This illustration shows NASA’s IXPE spacecraft, at right, observing blazar Markarian 501, at left. A blazar is a black hole surrounded by a disk of gas and dust with a bright jet of high-energy particles pointed toward Earth. The inset illustration shows high-energy particles in the jet (blue). When the particles hit the shock wave, depicted as a white bar, the particles become energized and emit X-rays as they accelerate. Moving away from the shock, they emit lower-energy light: first visible, then infrared, and radio waves. Farther from the shock, the magnetic field lines are more chaotic, causing more turbulence in the particle stream. Credit: NASA/Pablo Garcia

“Adding X-ray polarization to our arsenal of radio, infrared, and optical polarization is a game changer,” said Alan Marscher, an astronomer at Boston University who leads the group studying giant black holes with IXPE.

Scientists found that X-ray light is more polarized than optical, which is more polarized than radio. But the direction of the polarized light was the same for all the wavelengths of light observed and was also aligned with the jet’s direction.

After comparing their information with theoretical models, the team of astronomers realized that the data most closely matched a scenario in which a shock wave accelerates the jet particles. A shock wave is generated when something moves faster than the speed of sound of the surrounding material, such as when a supersonic jet flies by in our Earth’s atmosphere.

The study was not designed to investigate the origins of shock waves, which are still mysterious. But scientists hypothesize that a disturbance in the flow of the jet causes a section of it to become supersonic. This could result from high-energy particle collisions within the jet, or from abrupt pressure changes at the jet boundary.

“As the shock wave crosses the region, the magnetic field gets stronger, and energy of particles gets higher,” Marscher said. “The energy comes from the motion energy of the material making the shock wave.”

As particles travel outward, they emit X-rays first because they are extremely energetic. Moving farther outward, through the turbulent region farther from the location of the shock, they start to lose energy, which causes them to emit less-energetic light like optical and then radio waves. This is analogous to how the flow of water becomes more turbulent after it encounters a waterfall – but here, magnetic fields create this turbulence.

Scientists will continue observing the Markarian 501 blazar to see if the polarization changes over time. IXPE will also investigate a broader collection of blazars during its two-year prime mission, exploring more longstanding mysteries about the universe. “It’s part of humanity’s progress toward understanding nature and all of its exoticness,” Marscher said.

Reference: “Polarized blazar X-rays imply particle acceleration in shocks” by Ioannis Liodakis, Alan P. Marscher, Iván Agudo, Andrei V. Berdyugin, Maria I. Bernardos, Giacomo Bonnoli, George A. Borman, Carolina Casadio, Vi´ctor Casanova, Elisabetta Cavazzuti, Nicole Rodriguez Cavero, Laura Di Gesu, Niccoló Di Lalla, Immacolata Donnarumma, Steven R. Ehlert, Manel Errando, Juan Escudero, Maya Garci´a-Comas, Beatriz Agi´s-González, César Husillos, Jenni Jormanainen, Svetlana G. Jorstad, Masato Kagitani, Evgenia N. Kopatskaya, Vadim Kravtsov, Henric Krawczynski, Elina Lindfors, Elena G. Larionova, Grzegorz M. Madejski, Frédéric Marin, Alessandro Marchini, Herman L. Marshall, Daria A. Morozova, Francesco Massaro, Joseph R. Masiero, Dimitri Mawet, Riccardo Middei, Maxwell A. Millar-Blanchaer, Ioannis Myserlis, Michela Negro, Kari Nilsson, Stephen L. O’Dell, Nicola Omodei, Luigi Pacciani, Alessandro Paggi, Georgia V. Panopoulou, Abel L. Peirson, Matteo Perri, Pierre-Olivier Petrucci, Juri Poutanen, Simonetta Puccetti, Roger W. Romani, Takeshi Sakanoi, Sergey S. Savchenko, Alfredo Sota, Fabrizio Tavecchio, Samaporn Tinyanont, Andrey A. Vasilyev, Zachary R. Weaver, Alexey V. Zhovtan, Lucio A. Antonelli, Matteo Bachetti, Luca Baldini, Wayne H. Baumgartner, Ronaldo Bellazzini, Stefano Bianchi, Stephen D. Bongiorno, Raffaella Bonino, Alessandro Brez, Niccoló Bucciantini, Fiamma Capitanio, Simone Castellano, Stefano Ciprini, Enrico Costa, Alessandra De Rosa, Ettore Del Monte, Alessandro Di Marco, Victor Doroshenko, Michal Dovciak, Teruaki Enoto, Yuri Evangelista, Sergio Fabiani, Riccardo Ferrazzoli, Javier A. Garcia, Shuichi Gunji, Kiyoshi Hayashida, Jeremy Heyl, Wataru Iwakiri, Vladimir Karas, Takao Kitaguchi, Jeffery J. Kolodziejczak, Fabio La Monaca, Luca Latronico, Simone Maldera, Alberto Manfreda, Andrea Marinucci, Giorgio Matt, Ikuyuki Mitsuishi, Tsunefumi Mizuno, Fabio Muleri, Stephen C.-Y. Ng, Chiara Oppedisano, Alessandro Papitto, George G. Pavlov, Melissa Pesce-Rollins, Maura Pilia, Andrea Possenti, Brian D. Ramsey, John Rankin, Ajay Ratheesh, Carmelo Sgró, Patrick Slane, Paolo Soffitta, Gloria Spandre, Toru Tamagawa, Roberto Taverna, Yuzuru Tawara, Allyn F. Tennant, Nicolas E. Thomas, Francesco Tombesi, Alessio Trois, Sergey Tsygankov, Roberto Turolla, Jacco Vink, Martin C. Weisskopf, Kinwah Wu, Fei Xie and Silvia Zane, 23 November 2022, Nature.
DOI: 10.1038/s41586-022-05338-0

This illustration shows NASA’s IXPE spacecraft, at right, observing blazar Markarian 501, at left. A blazar is a black hole surrounded by a disk of gas and dust with a bright jet of high-energy particles pointed toward Earth. The inset illustration shows high-energy particles in the jet (blue). Credit: NASA/Pablo Garcia
Blazars are some of the brightest objects in the cosmos. They are composed of a supermassive ESO

Created in 1962, the European Southern Observatory (ESO), is a 16-nation intergovernmental research organization for ground-based astronomy. Its formal name is the European Organization for Astronomical Research in the Southern Hemisphere.

” data-gt-translate-attributes='[{“attribute”:”data-cmtooltip”, “format”:”html”}]’>ESO. “We finally had all of the pieces of the puzzle, and the picture they made was clear.”

IXPE in Earth Orbit

Artist’s representation of IXPE in Earth orbit. Credit: NASA

Artist’s representation of IXPE in Earth orbit. Credit: NASA
Launched on December 9, 2021, the Earth-orbiting IXPE satellite, a collaboration between NASA’s IXPE Helps Solve Black Hole Jet Mystery

This illustration shows NASA’s IXPE spacecraft, at right, observing blazar Markarian 501, at left. A blazar is a black hole surrounded by a disk of gas and dust with a bright jet of high-energy particles pointed toward Earth. The inset illustration shows high-energy particles in the jet (blue). When the particles hit the shock wave, depicted as a white bar, the particles become energized and emit X-rays as they accelerate. Moving away from the shock, they emit lower-energy light: first visible, then infrared, and radio waves. Farther from the shock, the magnetic field lines are more chaotic, causing more turbulence in the particle stream. Credit: NASA/Pablo Garcia

This illustration shows NASA’s IXPE spacecraft, at right, observing blazar Markarian 501, at left. A blazar is a black hole surrounded by a disk of gas and dust with a bright jet of high-energy particles pointed toward Earth. The inset illustration shows high-energy particles in the jet (blue). When the particles hit the shock wave, depicted as a white bar, the particles become energized and emit X-rays as they accelerate. Moving away from the shock, they emit lower-energy light: first visible, then infrared, and radio waves. Farther from the shock, the magnetic field lines are more chaotic, causing more turbulence in the particle stream. Credit: NASA/Pablo Garcia
“Adding X-ray polarization to our arsenal of radio, infrared, and optical polarization is a game changer,” said Alan Marscher, an astronomer at Boston University who leads the group studying giant black holes with IXPE.
Scientists found that X-ray light is more polarized than optical, which is more polarized than radio. But the direction of the polarized light was the same for all the wavelengths of light observed and was also aligned with the jet’s direction.
After comparing their information with theoretical models, the team of astronomers realized that the data most closely matched a scenario in which a shock wave accelerates the jet particles. A shock wave is generated when something moves faster than the speed of sound of the surrounding material, such as when a supersonic jet flies by in our Earth’s atmosphere.
The study was not designed to investigate the origins of shock waves, which are still mysterious. But scientists hypothesize that a disturbance in the flow of the jet causes a section of it to become supersonic. This could result from high-energy particle collisions within the jet, or from abrupt pressure changes at the jet boundary.
“As the shock wave crosses the region, the magnetic field gets stronger, and energy of particles gets higher,” Marscher said. “The energy comes from the motion energy of the material making the shock wave.”
As particles travel outward, they emit X-rays first because they are extremely energetic. Moving farther outward, through the turbulent region farther from the location of the shock, they start to lose energy, which causes them to emit less-energetic light like optical and then radio waves. This is analogous to how the flow of water becomes more turbulent after it encounters a waterfall – but here, magnetic fields create this turbulence.
Scientists will continue observing the Markarian 501 blazar to see if the polarization changes over time. IXPE will also investigate a broader collection of blazars during its two-year prime mission, exploring more longstanding mysteries about the universe. “It’s part of humanity’s progress toward understanding nature and all of its exoticness,” Marscher said.
Reference: “Polarized blazar X-rays imply particle acceleration in shocks” by Ioannis Liodakis, Alan P. Marscher, Iván Agudo, Andrei V. Berdyugin, Maria I. Bernardos, Giacomo Bonnoli, George A. Borman, Carolina Casadio, Vi´ctor Casanova, Elisabetta Cavazzuti, Nicole Rodriguez Cavero, Laura Di Gesu, Niccoló Di Lalla, Immacolata Donnarumma, Steven R. Ehlert, Manel Errando, Juan Escudero, Maya Garci´a-Comas, Beatriz Agi´s-González, César Husillos, Jenni Jormanainen, Svetlana G. Jorstad, Masato Kagitani, Evgenia N. Kopatskaya, Vadim Kravtsov, Henric Krawczynski, Elina Lindfors, Elena G. Larionova, Grzegorz M. Madejski, Frédéric Marin, Alessandro Marchini, Herman L. Marshall, Daria A. Morozova, Francesco Massaro, Joseph R. Masiero, Dimitri Mawet, Riccardo Middei, Maxwell A. Millar-Blanchaer, Ioannis Myserlis, Michela Negro, Kari Nilsson, Stephen L. O’Dell, Nicola Omodei, Luigi Pacciani, Alessandro Paggi, Georgia V. Panopoulou, Abel L. Peirson, Matteo Perri, Pierre-Olivier Petrucci, Juri Poutanen, Simonetta Puccetti, Roger W. Romani, Takeshi Sakanoi, Sergey S. Savchenko, Alfredo Sota, Fabrizio Tavecchio, Samaporn Tinyanont, Andrey A. Vasilyev, Zachary R. Weaver, Alexey V. Zhovtan, Lucio A. Antonelli, Matteo Bachetti, Luca Baldini, Wayne H. Baumgartner, Ronaldo Bellazzini, Stefano Bianchi, Stephen D. Bongiorno, Raffaella Bonino, Alessandro Brez, Niccoló Bucciantini, Fiamma Capitanio, Simone Castellano, Stefano Ciprini, Enrico Costa, Alessandra De Rosa, Ettore Del Monte, Alessandro Di Marco, Victor Doroshenko, Michal Dovciak, Teruaki Enoto, Yuri Evangelista, Sergio Fabiani, Riccardo Ferrazzoli, Javier A. Garcia, Shuichi Gunji, Kiyoshi Hayashida, Jeremy Heyl, Wataru Iwakiri, Vladimir Karas, Takao Kitaguchi, Jeffery J. Kolodziejczak, Fabio La Monaca, Luca Latronico, Simone Maldera, Alberto Manfreda, Andrea Marinucci, Giorgio Matt, Ikuyuki Mitsuishi, Tsunefumi Mizuno, Fabio Muleri, Stephen C.-Y. Ng, Chiara Oppedisano, Alessandro Papitto, George G. Pavlov, Melissa Pesce-Rollins, Maura Pilia, Andrea Possenti, Brian D. Ramsey, John Rankin, Ajay Ratheesh, Carmelo Sgró, Patrick Slane, Paolo Soffitta, Gloria Spandre, Toru Tamagawa, Roberto Taverna, Yuzuru Tawara, Allyn F. Tennant, Nicolas E. Thomas, Francesco Tombesi, Alessio Trois, Sergey Tsygankov, Roberto Turolla, Jacco Vink, Martin C. Weisskopf, Kinwah Wu, Fei Xie and Silvia Zane, 23 November 2022, Nature.
DOI: 10.1038/s41586-022-05338-0
Space

Surprising Results From NASA’s IXPE Help Unlock the Secrets of Famous Exploded Star

Space

NASA IXPE Observatory’s First Stunning Image: The Glowing Remains of an Exploded Star

Space

SpaceX Rocket Launches NASA’s IXPE Space Observatory – To Explore the Most Extreme and Mysterious Objects in the Universe

Space

X-Ray Polarimetry: Pushing the Boundaries of Space Exploration

Space

NASA’s New IXPE Mission Opens Its Eyes and Is Ready for Discovery!

Space

See the First Stunning Image From NASA’s New X-Ray Observatory

Space

NASA’s IXPE Mission Checks Out X-Rays From Extreme Cosmic Objects

Space

NASA’s Imaging X-Ray Polarimetry Explorer (IXPE) Mission Is Set To Launch – How To Watch Live

Another ridiculous answer from astrophysicists don’t consider the amount of energy to change the angular momentum and still allow it to accelerate to almost the speed of light and no Shockwave is going to do that, they need to stop acting like stuff doesn’t come out of black holes when clearly there’s been enough observations lately of things coming out of the black hole like the one recently of a star getting spit out years later or that a black hole had exploded, same thing with these jets I’m sure not a single one of their theories was of something coming back out of the black hole because the math that they will admit doesn’t work with black holes doesn’t claim it will do it.
Email address is optional. If provided, your email will not be published or shared.









SciTechDaily: Home of the best science and technology news since 1998. Keep up with the latest scitech news via email or social media.
  > Subscribe Free to Email Digest

November 21, 2022

Significant Post-COVID Brain Abnormalities Revealed by Special MRI

Scientists uncovered brain changes in patients up to six months after they recovered from COVID-19 by using a special type of MRI. This is according…

Read More

Scientists uncovered brain changes in patients up to six months after they recovered from COVID-19 by using a special type of MRI. This is according…
November 21, 2022

Can Stress Influence Your Appetite? A Johns Hopkins Study Reveals That It’s All in Your Head

November 21, 2022

Behold! NASA’s Artemis I Orion Close Flyby of the Moon

November 21, 2022

Evading Volcanic Disaster: Monitoring “Frothy” Magma Gases for Eruption Signals

November 21, 2022

Pain Relievers Like Ibuprofen and Naproxen May Worsen Arthritis Inflammation

November 20, 2022

Hubble Spots a Titanic Stellar Collision That Rattles Space and Time

November 20, 2022

Considered Impossible – New Study of 5 Million People Reveals Genetic Links to Height

November 20, 2022

More Successful Than Ketamine – A Shocking Depression Treatment

Copyright © 1998 – 2022 SciTechDaily. All Rights Reserved.

source

%d bloggers like this: